當前位置:首頁 > 技術文章
光學鏡頭作為成像系統的核心部件,其組裝工藝的精密程度直接影響成像質量與產品穩定性。岱美光學憑借多年技術積累,構建了一套涵蓋材料預處理、精密裝配、多級檢測的全流程工藝體系。本文將從工藝流程、關鍵技術、質量控制三個維度,深度解析岱美光學鏡頭組裝...
光學鏡頭作為成像系統的核心組件,其組裝質量直接影響成像清晰度、畸變率及使用壽命。岱美儀器作為制造商,其組裝工藝需嚴格遵循精密制造標準。本文將從環境控制、操作規范、檢測校準三大維度,系統梳理岱美光學鏡頭組裝的注意事項,為行業提供可參考的實踐指南。一、潔凈環境控制:杜絕微塵污染1.無塵車間要求組裝需在萬級以上潔凈室進行,溫度控制在20±2℃,濕度≤50%,以減少靜電吸附與鏡片發霉風險。2.人員與物料管理①操作人員需穿戴防靜電無塵服、手套及口罩,并通過風淋室除塵后方可...
探針式輪廓儀通過物理探針接觸樣品表面,以高精度測量微觀形貌。其核心原理是:探針(通常為金剛石材質,曲率半徑50nm-25μm可選)在樣品表面劃動時,表面微觀凹凸使探針產生垂直位移,位移傳感器(如壓電陶瓷或激光干涉式)將機械位移轉化為電信號,經放大、濾波后重建三維輪廓。該技術可實現0.1nm級垂直分辨率和0.05-0.2μm橫向分辨率,測量范圍達55mm,適用于晶圓薄膜厚度、金屬表面粗糙度等場景。精度影響因素可歸納為以下核心維度:探針參數半徑:半徑過小(如測量力:需控制在微牛級...
在材料科學與電子設備制造領域,薄膜技術的突破正推動著產品性能的迭代升級。從柔性顯示屏的透明導電層到半導體芯片的納米級柵極氧化層,膜厚控制精度直接決定了材料的電學、光學及機械性能。膜厚測量儀作為關鍵質量檢測工具,憑借其非接觸、高精度、快速分析的特點,成為研發與生產環節中至關重要的“精密標尺”。一、材料研發:從實驗室創新到規模化應用的橋梁在新型材料開發過程中,膜厚測量儀為研究者提供了實時反饋與過程優化手段。例如,在鈣鈦礦太陽能電池研發中,空穴傳輸層的厚度需精確控制在20-50納米...
膜厚測量儀是半導體、光學鍍膜、材料科學等領域的關鍵檢測設備,其測量精度直接影響產品質量與工藝優化。本文以常見接觸式(如臺階儀)與非接觸式(如光譜橢偏儀)儀器為例,系統梳理從儀器校準到數據處理的完整操作步驟,助力用戶高效獲取可靠數據。一、操作前準備:環境與樣品預處理1.環境控制:將儀器置于恒溫(20-25℃)、無振動的工作臺,避免溫度波動或機械振動導致測量誤差。關閉強光光源,減少環境光對光學類儀器的干擾。2.樣品清潔:用無塵布蘸取異丙醇(IPA)輕輕擦拭樣品表面,去除指紋、灰塵...
在半導體制造的精密世界里,硅片膜層厚度的微小偏差都可能導致器件性能衰減甚至失效。傳統接觸式測量方法因易劃傷晶圓表面、無法實時監測等問題,逐漸被非接觸式技術取代。近紅外光(NIR)憑借其特殊的物理特性,成為硅片厚度測量儀的核心光源,為芯片制造、光伏產業等領域提供了兼具速度與精度的解決方案。一、穿透性與低吸收:NIR破解多層膜“透明迷宮”硅片表面常沉積有氧化硅、氮化硅、多晶硅等多層薄膜,傳統可見光易被膜層吸收或反射,導致測量信號失真。近紅外光(波長范圍780-2500nm)的能量...